IP Video Phone on DM64x

Sriram Sethuraman
Ittiam Systems Pvt. Ltd., Bangalore

Acknowledgments to:
Ittiam AV Systems and VVOIP Teams
Overview

- Video Phone
 - Brief history
 - Over IP – New Markets

- Suitability of DM64x
 - Solution variants

- Challenges
 - Raw Computational Complexity
 - Interoperability
 - Quality of Service
 - Video Quality, Latency, Error Resilience, Lip Sync
 - Total Bill of Materials

- Ittiam Solution on DM642
Video Phone

- Pursued since the 1960’s
- Adopted widely today in corporate environments
 - Over ISDN
 - Over Leased networks
- Tends to be expensive
 - Cheap ones have poor quality
- PC software solutions exist for consumers
 - Hog most of the PC when running
 - High resolutions are not possible
 - Even if bandwidth permits it
 - Not TV-centric
- Bandwidth limitations to consumers
 - Limits the user experience
IP Video Phone

- Rides on the success of Voice over IP’s wide acceptance
- Triggered by
 - Broadband deployments and last-mile solutions
 - DSL
 - DOCSIS cable modems
 - Wi-Fi/WiMax
 - Low cost computing power
 - High level of peripheral integration (reduced BoM)
 - Interoperability protocols
- New markets
 - Multi-use appliances (targeting the consumer space)
 - IP video phone / set-top box / …
 - PC acceleration cards (targeting the enterprise space)
 - For collaborative work environments
 - Video Acceleration for existing VoIP products
VoIP Components

Capture → AEC/ECS → Encode → Packetize → UDP/IP Send

Double Talk Detector → Encode

PlayOut

Decode (or) Conceal → AJB + Depacketize → UDP/IP Receive

SIP/H.323 → Call Setup Manager → TCP/IP Send/Rcv

UI Module → NIC

Texas Instruments

Technology for Innovators™
VoIP + Video

Capture → Encode → Packetize → UDP/IP Send

AEC/AES → Capture → Encoder → Packetize → UDP/IP Send

UDP/IP Send/Rcv → TCP/IP Send/Rcv

SIP/H.323 Call Setup Manager → TCP/IP Send/Rcv

UI Module

AJB + Depacketize

AJB + Depacketize

UDP/IP Receive

Decode (or) Conceal

Decode (or) Conceal

PlayOut

Lip Sync

PlayOut

Double Talk Detector

N I C

PlayOut

Technology for Innovators™

TI C64x DSP Core

- Up to 1GHz clocking of the core
- VLIW architecture – exploits instruction level parallelism
- Acceleration for video compression
 - 8-bit SIMD instructions tuned for motion estimation/compensation
 - SUBABS4, AVGU4, MPY4, etc.
 - Unaligned loads
 - Packing/unpacking instructions
 - 64-bit wide load/store
 - Enhanced DMA Controller
 - 2D DMA support
 - 4 Priority Queues (to allow peripherals to work in parallel)
 - 64-channels
 - Transfer Completion Interrupt, Chaining, & Linking
 - 2-level on-chip cache
 - Reasonable amount of on-chip memory
Suitability of TI DM641/642

- Glueless interface
 - to CMOS sensor modules
 - to LCD module or NTSC/PAL encoders
- I2C interface to control on-board peripherals
- On-chip Ethernet MAC with DMA capability
- PCI interface
 - Low cost peripherals
 - Easy to make it as an accelerator card
- Host Port Interface
 - Enables VoIP processor + Video processor model
- Interface to audio ADC and DAC
- Up to 64-bit wide EMIF
 - Enables code and data to be transferred faster
- GIOs for Keypad/Remote Interfacing
Potential Configurations

Single Processor
- DM642
- Camera Module
- LCD Controller
- SDRAM
- Flash
- Audio
- ADC
- Audio DAC
- Eth
- PHY
- Key Pad

VoIP Processor + DM64x for Video Processing
- SDRAM
- Camera Module
- DM642
- RISC
- Flash
- Audio
- ADC
- Key Pad
- Eth
- PHY
- Audio DAC

PC (as VoIP Processor) + DM64x for Video Processing
- Camera Module
- DM642
- SDRAM
- PCI
- PC + NIC + Monitor + Keyboard
Challenge Dimensions

- To decrease network bandwidth requirements
 - Need to
 - Improve encoding algorithms
 - Move from H.263+/MPEG-4 to H.264
 - Increases computational complexity several fold

- So many pieces to integrate; Increases
 - Overall design complexity
 - Task scheduling complexity
 - Internal memory usage complexity
 - Code placement
 - Scratch re-use
Challenge Dimensions

○ Interoperability Challenges
 ➔ Suite of Video and Speech Codecs
 • H.261, H.263, H.263+, H.264
 • G.711, G.723, G.726. …
 ➔ RTP packetization for each codec
 • Variations introduced by different vendors
 • Draft stage for new codecs
 ➔ SIP level interoperability
 ➔ RTCP provision at the remote end
 ➔ NTP server
Challenge Dimensions

Quality of Service Challenges

- Visual quality
 - Complex encoding algorithms
 - In the presence of packet losses
 - Error robustness varies with the codec
 - Trade-offs among intra refresh rate, FEC protection, bit-rate, and quality

- Latency
 - Needs to be close to 250ms for good interaction
 - Requires a fine granularity of scheduling to pipeline all processing stages
 - Have no control on Network latencies
 - Ability to respond to congestion through rate control
Ittiam Video Phone Solution

- DM642@600MHz based
- MPEG-4/H.263 at VGA@20-25fps + G.723
- All VoIP components
- Latency < 300ms (excluding network latency)
- Handles packet loss
 - through intra refresh, RTCP
- Custom reference board with camera, LCD, keypad, and speakers
Future Steps

- H.264 Baseline Profile@CIF@30fps
 - Exploit error resilience mechanisms in H.264
- Make it work with the multiple configurations
- Reduce latency through fine granular pipelining