
Unified Power Management Framework for
Portable Media Devices

Ashwin Iyenggar, Ambudhar Tripathi, Ajit Basarur and Indranil Roy

{ashwin.iyenggar@gmail.com , ambudhar.tripathi@ittiam.com, ajit.basarur@ittiam.com and indranil.roy@ittiam.com }
Ittiam Systems Pvt. Ltd, 1 Richmond Road, Bangalore-560025, India.

{www.ittiam.com}

Abstract – Power management is one of the key design
challenges in the design of Portable Multimedia Devices (PMD).
Existing power management techniques are limited to hardware
based DVFS (Dynamic schemes and do not take into account
application states and many usage scenarios. In this
correspondence, a new Unified Power Management Framework
(UPMF) is proposed which describes a software architecture for a
unified hardware and software controlled power management.
The framework provides a set of rules for classifying the several
devices on a PMD into device classes. Each of these device classes
has a set of well-defined states based on the application state. The
power management framework contains a power manager
module that monitors the application and maintains the states of
the devices and based on the power management strategy,
controls the states of the devices. The proposed UPMF is very
simple to implement and is well suited to handle power
management strategies for several classes of applications.
Performance of this proposed scheme for a Portable Media
Player and Recorder device is also presented.

Ι. INTRODUCTION
With the advent of faster processors and higher capacity

storage media the audio devices in the market are quickly
transitioning into Portable Media Devices (PMD) capable of
handling the functionalities of an audio player, video player,
still camera, camcorder and gaming devices. This
convergence in applications coupled with evolving consumer
expectations and rapid development in processor capabilities
pose tremendous challenges in the overall system design. One
of the many design challenges to be addressed in this fast
growing segment is the ever increasing demand for power
hungry media processing functions to be offset with the
demand for longer battery life.

Integration at the chip level often combining the many
processing cores and peripheral devices interface into a single
chip exacerbates the power dissipation problem. A similar
integration in the software system capable of handling multiple
functionalities degrades the efficiency of any hardware only
power management techniques. Therefore, power management
no longer remains a hardware only problem and needs to be
addressed at the system level. Most existing techniques have
limited themselves to hardware based Dynamic Voltage and
Frequency Scaling (DVFS) schemes [3], [4], [5], [6].
However, these techniques have not been designed well
enough to be scalable to handle the many application states
that the devices support. Therefore there is a strong need to
devise new system level power management solutions that

utilizes the DVFS to the best possible extent as application
moves from one state to other.

In this correspondence, we propose a Unified Power
Management Framework (UPMF) that is capable of handling
the many multimedia applications in a single device and
provide best possible power optimization strategy suitable for
each of the several applications supported in a single device.

ΙΙ. MULTIMEDIA APPLICATIONS – POWER USAGE
CHARACTERISTICS

Today’s portable multimedia devices use highly integrated
SOCs. We will consider a typical multimedia SOC based
system that has more than one DSP processing core and a
RISC core with on-chip peripherals support for multimedia
functionality. Commercially available devices like TI’s
TMS320DM320 [12], DaVinci

TM
[12] and ADI’s

BlackFin
TM

[13] series of processors are a good example of
such integrated SOCs aimed at the portable consumer
electronics market. Fig. 2 shows a high-level block diagram of
a typical PMD system.

Portable Media Devices typically support one or more
applications like audio player, image viewer, image viewer
with audio player, audio-video player, audio recorder, still
camera, movie recorder. These applications use one or more of
the following on chip or on board devices: storage media
(Compact Flash, Harddisk, SmartCards), Ethernet or Wireless
LAN chip for accessing content, LCD or a NTSC encoder (TV
out interface) for display, CCD/CMOS or a NTSC decoder
(Video input interface) chip for capture, microphone or line in
device for audio/voice capture, speaker or headphone for audio
rendering, on board SDRAM for processing/storing data, audio
and video DAC/ADC, hardware scaler, image processing
modules. Consider an audio only player mode of operation
with content from local storage media. With reference to Fig.
2, LCD, TV In, Video out, Ethernet modules will be inactive
in this mode of operation. Also the many coprocessors
available on chip will be idle in this mode and the System
RAM can be clocked lower and the HDD can be turned off for
longer time by intelligently caching data onto on-board
SDRAM (or System RAM). Using existing hardware based
power management techniques like DVFS [1], [2], [7], [11]
and activity detection only it would be impossible to do power
management of the on-chip peripherals and interfaces like TV
out, AV DACs. Also we would need an application aware
software power management technique to turn off these

1-4244-1039-8/07/$25.00 ©2007 IEEE

unused on chip and on board peripheral devices. Another
usage scenario is one in which the user is browsing through the
files. Since the usage pattern cannot be predicted in this case
any activity based power saving using existing power
management techniques would not help. A software controlled
application aware power manager can identify this state and
lower the clocks and turn of unused processing modules.
Another significant challenge is that of hard disk power
management in case of playing a movie. Partial buffering of
movie files is done and the HDD is put to sleep mode before
waking it up to buffer the next chunk. The challenge then is to
predict accurately when to bring it back to the active state
without affecting smooth playback of movie. In order to
guarantee such high quality user experience, power saving
schemes in multimedia applications need to be tightly coupled
with the application itself. Hence, the challenge is to arrive at a
sufficient level of abstraction for power management for the
many application scenarios while trying to use the application
specific information for power savings.

ΙΙΙ. UNIFIED POWER MANAGEMENT FRAMEWORK (UPMF)
UPMF defines a software architecture for handling power

management of devices optimally for each of the application
states. The architecture uses well-defined abstractions and
strategies to achieve efficient power management. Fig. 1
indicates the architecture of a multimedia system with UPMF.

Figure 1 Architecture of Multimedia System with UPMF

A. UPMF Classes

The UPMF Classes abstraction models the devices in the
PMD into classes based on its usage pattern for any given
application. The framework defines the following classes:
Class A: Multimedia specific components used only by
multimedia applications with empirically determined usage
patterns. Typical examples of such devices are image
processing peripherals, capture and display peripherals like TV
out and CCD/CMOS interface devices.

Class B: General components with empirically determined
usage patterns - other non-multimedia applications will also
use these components. Typical examples of such devices are
memory devices like SDRAM, on chip RISC Core.
Class C: Components whose usage does not confirm to a
particular predictable behavior pattern. Storage devices like
hard disks typically fall into this category.
Class D: Components that need a user activity based power
saving schedule. Devices like the LCD display fall into this
category.

The criterion used for the above classification has been the
nature of functioning of the devices themselves. To handle the
differences in the functioning and usage of the devices, the
power management framework handles each of these classes
of devices independently. The framework expects applications
to classify their components into one of the four classes
described above.

B. UPMF Classes Configurations

DVFS schemes are usually tied to OS tasks and are seldom
determined by the applications making the arrangement sub
optimal across application categories [8], [9] [10]. Under the
UPMF framework the various classes are defined to have
certain well-defined configurations that can be mapped onto a
pre defined set of frequency and core voltage numbers. For
Class A devices the framework requires that the application
provide it with the optimal voltage and frequency for each of
the components when the application is active. Since these
devices are used exclusively by multimedia applications, the
configuration settings can be used unchanged on the actual
system. For Class B devices the framework expects two sets of
configurations - one being the optimal configuration used by
the multimedia application alone, and another being the
minimal configuration guarantying desired level of
performance under all applications. Classes C and D due to
their nature of access will not have an optimal configuration
and will be more dependent on access state.

C. UPMF States

All devices classified under classes C and D would have
well defined states as per the application requirements. Thus
each of the applications would identify the defined states for
each of the devices through a well-defined data structure as
provided in the framework. A Class C device like HDD would
have states of sleep, on, off. Similarly a Class D device like
LCD would have states like on, off, 30% brightness, 50%
brightness and so on.

D. UPMF Strategies

The power management framework is an active entity that
once configured, manages the power requirements of each
application, and appropriately handles the target components.
For each of the applications all the power aware/configurable
devices are categorized into the several UPMF classes and
their corresponding configurations and states are defined and
registered with the UPMF. A simplified architecture diagram
of the UPMF is provided in Fig. 3 below. The UPMF pre

UPMF

Device Drivers

Hardware

Application 1 Application 2

defines these interactions with the applications with a set of
well-defined API. Similar sets of well-defined APIs are
defined for interaction between the framework and the devices.
As shown in Fig. 3, applications send their state information
that can be directly translated into minimum required active
state for different devices for the particular application by
UPMF using the device class and the appropriate state
information. This state information includes the minimum
possible frequency of operation, minimum supply voltage and
module on/off condition. This information is then fed to power
manger that has information about states supported by the
devices. Power manager queries the devices through the
device drivers to determine the power aware states that are
supported by the devices. Power manger resolves the conflict
between different applications and puts devices in maximum
active state requested by the union of all concurrently running
applications. Power manager module monitors the application
and maintains the states of the devices and based on the power
management strategy dynamically controls the states of the
devices, as shown in Fig. 4, thereby ensuring optimal power
consumption by each of the devices for a given application. As
shown in Fig. 4 after resolving the conflicts in the application
states, indicated by the state manager, for each of the devices
the Power Manager uses a look up mechanism to set the device
state. The look up mechanism is device class specific and uses
either a <Voltage, Frequency>-tuple or a device state logic
based on threshold or dependency criteria.

ΙV. RESULTS, CONCLUSIONS, FUTURE WORK

The proposed framework has been tested on a battery
operated Portable Media Player Recorder (PMPR) device. The
power savings using the UPMF are tabulated in Table 1.
In this correspondence it was shown that a new and efficient
UPMF is capable of providing exceptional power optimization
for each of the application classes. The unique features of this
new framework are: it works on statistically determined device
configuration settings, works independently of the application
and does not require run-time intervention, it maintains
multimedia applications agnostic of whether certain devices
are shared by other applications, and gracefully handles

devices that support power optimizations as well as those that
do not. With continuous improvement in dynamic power and
performance range of new processors through advances in
semiconductor technology coupled with newer more power
hungry applications, the proposed framework will need to be
further fine tuned to keep up with the growing power saving
demands of applications.

REFERENCES
[1] L. Benini, A. Bogliolo, and G. D. Micheli, “A Survey of Design
Techniques for System-Level Dynamic Power Management,” IEEE
Transactions on Very Large Scale Integration Systems, vol. 10(2), pages. 299–
316, June 2000.
[2] K. Nowka et al., “A 32-bit PowerPC Syetem-on-a-Chip with Support for
Dynamic Voltage Scaling and Dynamic Frequency Scaling,” IEEE Journal of
Solid-State Circuits, vol. 37(11), pp. 1441–1447, Nov. 2002.
[3] K. Govil, E. Chan, and H. Wasserman, “Comparing Algorithms for
Dynamic Speed-Setting of a Low-Power CPU,” in Proc. ACM Int’l Conf. on
Mobile Computing and Networking, 1995, pp. 13–25.
[4] T. Pering, T. Burd, and R. Brodersen, “The Simulation and Evaluation of
Dynamic Voltage Scaling Algorithms,” in International Symposium on Low
Power Electronics and Design (ISLPED), August 1998, pp. 76–81.
[5] Dirk Grunwald and Philip Levis and Keith I. Farkas and Charles B.
Morrey III and Michael Neufeld, “Policies for Dynamic Clock Scheduling,” in
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), October 2000.
[6] K. Flautner and T. Mudge, “Vertigo: Automatic Performance Setting for
Linux,” in USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Dec. 2002.
[7] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat, “ECOSystem:
Managing Energy as a First Class Operating System Resource,” in Tenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, October 2002.
[8] C. Poellabauer and K. Schwan, “Power-Aware Video Decoding using
Real-Time Event Handlers,” in 5th International Workshop on Wireless
Mobile Multimedia (WoWMoM), September 2002.
[9] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
Reduced CPU Energy,” in First Symposium on Operating Systems Design and
Implementation, November 1994.
[10] D. Son, C. Yu, and H.-N. Kim, “Dynamic Voltage Scaling on MPEG
Decoding,” in International Conference on Parallel and Distributed Systems
(ICPADS), June 2001, pp. 633–640.
[11] B. Brock and K. Rajamani, “Dynamic Power Management for Embedded
Systems”, in Procedings of the IEEE International SOC Conference,
September 2003.
[12] http://focus.ti.com/docs/solution/folders/print/267.html
[13] http://www.analog.com/en/app/0,3174,996%255F1163,00.html

Figure 2: System Components of a Multimedia Device

Figure 3 UPMF Architecture

UPMF

M
E
D
I
A

A
P
P
L
I
C
A
T
I
O
N

Pow
er M

anager

Class A Device

Id,
Optimal <V, F>

Class B Device

Id,
 Optimal <V, F>,
Normal <V, F>

Class D Device Dependency,
Threshold

Id, Dependency,
Threshold,

 <V, F> or Dev State

Class C Device

App State 1
App State 2

…

App State 1-> Dev State
App State 2-> Dev State

…

Id: Device Id
Normal <V, F>: voltage and frequency setting for normal application
Optimal <V, F>: voltage and frequency setting for multimedia only application
Dev State: device state, App State: application state

RISC

DSP

Co-Proc
1

Co-Proc
2

Co-Proc
3

USB

ATA
I/F Ethernet CMOS/TV In

Line in Audio

Microphone

IR / Keys

Battery
System RAM

Memory Card

LCD

TV out

Headphone

Speaker

Image

Processing

Hardware
Scaling

Audio
/Video
ADC

Audio
/Video
DAC

Figure 4 UPMF Control Flow

Table 1: Power savings (reduction in current) with UPMF for a Portable Multimedia Device

NA – Not applicable state

Application

Multimedia state

Without any power saving
strategies

(mA)

With UPMF
(mA)

GUI LCD ON 830 700

 LCD OFF NA 610

AV PLAYER MOVIE SELECT-LCD ON 1090 700

 MOVIE SELECT-LCD OFF NA 630

 MOVIE PLAY –HDD Wake UP NA 1300

 MOVIE PLAY –HDD SLEEP 1240 820

 MOVIE PAUSE – LCD ON 870 700

 MOVIE PAUSE – LCD OFF NA 620

AUDIO SONG SELECT- LCD ON 1080 700

 SONG SELECT- LCD OFF NA 620

 SONG PLAY – LCD ON 1040 700

 SONG PLAY – LCD OFF NA 620

 SONG PAUSE – LCD ON 1040 670

 SONG PAUSE – LCD OFF NA 590

IMAGE IMAGE VIEW 800 760
IMAGE AND
AUDIO SONG SELECT – LCD ON 1140 700

 SONG SELECT – LCD OFF NA 620

 SONG WITH PICTURE 1020 - 1060 1010

Application State

Class A Device Device State

A
P
P
L
I
C
A
T
I
O
N

State
Manager

Lookup <V, F> tuple

Is device is used by non-
multimedia app.
Lookup <V, F> tuple

Look up Class C device state
for given application state

Check if dependency &
threshold conditions are
satisfied

Class B Device Device State

Class C Device Device State

Class D Device
Device State

	Select a link below
	Return to Proceedings

